
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 31: 787–800 (1999)

NUMERICAL SIMULATION OF INCOMPRESSIBLE FLOW
DRIVEN BY DENSITY VARIATIONS DURING PHASE

CHANGE1

E. MCBRIDEa,*, J.C. HEINRICHa AND D.R. POIRIERb

a Department of Aerospace and Mechanical Engineering, The Uni6ersity of Arizona, Tucson, AZ 85721, USA
b Department of Materials Science and Engineering, The Uni6ersity of Arizona, Tucson, AZ 85721, USA

SUMMARY

A change in density during the solidification of alloys can be an important driving force for convection,
especially at reduced levels of gravity. A model is presented that accounts for shrinkage during the
directional solidification of dendritic binary alloys under the assumption that the densities of the liquid
and solid phases are different but constant. This leads to a non-homogeneous mass conservation
equation, which is numerically treated in a finite element formulation with a variable penalty coefficient
that can resolve the velocity field correctly in the all-liquid region and in the mushy zone. The stability
of the flow when shrinkage interacts with buoyancy flows at low gravity is examined. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The densities of materials in their solid and liquid states are normally different. The change in
volume associated with the change in density is usually referred to as shrinkage and may be
positive if the solid has a higher density or negative if the solid is less dense than the liquid.
During solidification, the difference between densities requires the melt to move toward the
solidifying front when the shrinkage is positive or to move away from it when negative; either
way, flow is induced in the melt. Even though the magnitude of the velocities produced by the
shrinkage is small, especially in the dendritic or mushy zone, this flow may have a strong
impact on the solidified composition and contribute to macrosegregation in the cast alloy.

Numerical studies of shrinkage-induced flows in the mushy zone of directionally solidified
binary alloys were first performed in the 1970s and early 1980s [1–3]. These simulations
considered flow in the mushy zone only and solved the local solute redistribution equation [4]
coupled with Darcy’s Law for flow in the porous mushy zone. More recently, models based on
mixture theory [5] or volume-averaged equations [6–9] have been used to calculate thermoso-
lutal convection in solidifying binary alloys. These models include the all-solid and all-liquid
regions, as well as the mushy zone, and were the first ones capable of predicting some severe
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forms of macrosegregation associated with convection, such as A-segregates and freckles
[10,11].

When solidification is effected under the influence of terrestrial gravity, it is generally
accepted that the effect of shrinkage-induced flow is not significant. However, Krane and
Incropera [12] concluded that, for some alloys and for high solidification rates, the effect of
shrinkage is important. Calculations of the solidification of binary alloys including shrinkage
have also been reported by Chiang and Tsai [13,14], Xu and Li [15,16], Schneider and
Beckermann [17] and Naterer [18]. In these studies, emphasis was placed on assessing the effect
of shrinkage-induced flow on macrosegregation under gravity. Also, an effort was made [13,18]
to describe the change in the free surface during the solidification process. Calculated pressure
in the mushy zone was reported in only one study [15].

In the present work, the effect of density variations are introduced in a vertical solidification
model of the binary alloys used by Felicelli et al. [11,19], under the restriction that the densities
in the liquid and solid phases are different but constant. The focus of the study is the
interaction between the shrinkage-induced flow and buoyancy flows at low gravity levels,
which is of interest in environments, such as those encountered in the space shuttle or space
station.

The appropriate equations are first established, and the numerical method used is then
described and validated. Finally, the stability of the flows is examined using a Pb–Sn system
under various gravitational conditions.

2. GOVERNING EQUATIONS

The solidification process is examined for a liquid binary alloy contained in a rectangular mold
that is cooled at the base at a specified rate. The dendritic zone is modeled as a porous
medium, with a non-uniform anisotropic permeability, and is allowed to develop according to
the local thermodynamic conditions. The conservation equations of mass, momentum, energy
and solute content are solved in two dimensions using the following main assumptions:

1. The liquid is Newtonian and incompressible, and the flow is laminar.
2. Only liquid and solid phases are present; no pores form.
3. There is no solute diffusion in the solid.
4. The densities and specific heat capacities of the solid and liquid are different but constant.
5. All other physical properties are constant and equal in the solid and liquid.
6. The solid is stationary, and the liquid satisfies the Boussinesq approximation.

The mixture density, r, in the mushy zone is

r=rs(1−f)+rlf, (1)

where f is the volume fraction of liquid and rs denotes the density of the solid phase and rl

that of the liquid phase. A similar assumption will be made to express the volumetric enthalpy
of the mixture, rH, where H denotes the intensive enthalpy in J kg−1,

rH=rsHs(1−f)+rlHlf, (2)

where the subscripts s and l correspond to the solid and liquid phases respectively. It is also
assumed that, in the mushy zone, the enthalpies Hl and Hs are linear functions of temperature,
so their difference can be written in the form
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Hl−Hs=L+ (cp l
−cp s

)(T−TH), (3)

where T is temperature, cp l
and cp s

are the (constant) specific heat capacities in the liquid and
solid respectively, and L is the latent heat at the reference temperature TH.

The governing equations are obtained using volume averaging, following the work of
Ganesan and Poirier [20]. In non-dimensional form, these are as follows:
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Mixture solute concentration:
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In these equations, ui denotes the velocity component in the co-ordinate direction xi, t is
time, p is the pressure, ni is the direction cosines of the gravitational acceleration vector, rc is
the average product of density r and the total solute concentration c, and r0 is the reference
density. The parameters are:

1. The shrinkage, b : b= (rs−rl)/rl.
2. The Reynolds number, Re : Re=VH/n0.
3. The Darcy coefficients, Daxi

: Daxi
=Kxi

/H2.
4. The thermal Rayleigh number, RaT: RaT= (bTgGH4)/(n0DT).
5. The Prandtl number, Pr : Pr=n0/DT.
6. The solutal Rayleigh number, Ras: Ras= (bsgc0H3)/(n0Ds).
7. The Schmidt number, Sc : Sc=n0/Ds.
8. The ratio of heat capacities, g : g= (rscp s

)/(rlcp l
).

9. The non-dimensional latent heat, L. : L. =L/(cp l
GH).

10. The non-dimensional reference temperature, T. H : T. H=TH/GH.

In the above definitions, V and H are respectively the reference velocity and length; n0 is the
kinematic viscosity; Kxi

is the permeability in the direction xi ; which is assumed to be a
principal direction; bT and bs are the thermal and solutal expansion coefficients; DT and Ds are
the thermal and solutal diffusion coefficients; g is the magnitude of the gravitational accelera-
tion; G is the reference thermal gradient; and c0 is the reference solute concentration. The
temperature is non-dimensionalized using GH as the scale, the reference time is H/V, and the
reference pressure is r0V2. The reference length, H, is chosen to be of the same order as the
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primary dendrite arm spacing, and the characteristic velocity is selected as the ratio of an
imposed cooling rate (given in the section on numerical simulations) to the initial temperature
gradient when gravity is small. For values of g close to terrestrial gravity, the velocity scale is
set to 
gbTGH2, which is related to the buoyancy.

In the Boussinesq approximation, the density is assumed to be a linear function of
temperature and solute concentration,

r=rl[1+bT(T−T0)+bc(cl−c0)], (8)

where T0 is the reference temperature and r0 must be the density of the liquid phase at T0, c0.
In the absence of solute diffusion in the solid, the average solute concentration in the solid, cs,
is given by

cs=
1

1−f

& 1

f

kcl df, (9)

where k is the equilibrium partition ratio.

Table I. Physical properties of the Pb–Sn mixture

Property Reference

Reference temperature (taken as the liquidus temperature of the alloy): [26]
T0=546.5 K

Equilibrium partition ratio: k=0.31 [26]
Melting point of lead: TM=600 K [26]

[26]Slope of liquidus line: m=−2.33 K (wt.%)−1

Liquid density: rl=8800 kg m−3 [27]
Solid density: rs=9700 kg m−3 [27]
Thermal expansion coefficient: bT=1.2×10−4 K−1 [27]

[27]Solutal expansion coefficient: bc=5.15×10−3 (wt.%)−1

[28]Kinematic viscosity: n0=2.47×10−7 m2 s−1

Latent heat: L=37.6 kJ kg−1 K−1 [29]
Liquid heat capacity: cp l

=0.19 kJ kg−1 K−1 [29]
Solid heat capacity: cps

=0.16 kJ g−1 K−1 [29]
[30]Thermal conductivity: k=0.0182 kW m−1 K−1

[28–30]Thermal diffusivity: DT=1.1×10−5 m2 s−1

—Solutal diffusivity: Ds=3×10−9 m2 s−1

Permeability in the x1-direction (transverse to dendrite growth) in m2:
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Permeability in the x2-direction (parallel to dendrite growth) in m2:
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Figure 1. Permeabilities perpendicular to the primary dendrite arm spacing, d1, as a function of the volume fraction
of liquid, f.

Finally, in dendritic freezing processes of alloys, the composition of the dendritic liquid at
a given temperature is essentially uniform and the local solid–liquid interface is very close to
equilibrium. Therefore, the composition of the interdendritic liquid is given by the liquidus line
in the phase diagram, which is assumed to have a constant slope, m. Then, we have

cl=Í
Ã

Ã

Á

Ä

c

T−TM

m

if f=1

if fB1
, (10)

where TM is the melting temperature of the solvent. The concentrations of solute in the solid
and liquid, cs and cl, are related to the total concentration through the expression

rc=rlclf+rscs(1−f). (11)

Because the interest is in vertical directional solidification, it can be assumed that the
principal directions of the permeability tensor coincide with the axial system describing the
rectangular container. If this is not the case, Equation (5) should be modified to account for
the local direction of dendritic growth, which requires a local transformation of the permeabil-
ity tensor. Details of this procedure are given by Sinha et al. [21].

3. FINITE ELEMENT METHOD

The weighted residual form of Equations (4)–(7) is discretized using bilinear isoparametric
elements to obtain the velocity, temperature and total solute concentration. The remaining
variables, cs, cl and f, are calculated at the nodes using Equations (9)–(11) respectively. They
are then interpolated for use in the conservation and momentum equations using bilinear
elements. The algorithm uses a Petrov–Galerkin formulation for stabilization and the penalty
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method to impose incompressibility. Most of the details have already been published in
References [19,22] and are not repeated here. However, use of the penalty method to impose
incompressibility when the continuity equation is not homogeneous needs to be justified. This
is done by first assuming that Equations (4) and (5) have been discretized using a mixed
formulation consisting of a bilinear velocity and constant element pressure at the element level.
This leads to a discrete system of equations of the form�M

0
0
0
n�u;

p;
n

+
� B

CT

−C
0
n�u

p
n

=
�F

G
n

, (12)

where the 8×8 matrix B contains the contribution of the diffusion and Darcy terms only. The
non-linear and buoyancy terms are placed in the vector F. The element G contains the
contribution of the right-hand-side term in the continuity equation.

Figure 2. Results for solidification at zero gravity after 4000 s, with d1=mm.
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Figure 3. Vertical pressure gradient in the mushy zone as calculated and estimated from Darcy’s Law. Same
conditions as Figure 2.

In the second square matrix of Equation (12), the zero diagonal element is approximated by
1/l, where l is the penalty parameter, which is positive and large. Multiplying and manipulat-
ing this modified expression, one obtains the equations

Mu; + (B+lCCT)u=F+lCG (13)

and

p= −l(CTu−G). (14)

The last equation gives the constant dynamic pressure over the element and is equivalent to
defining it by the relation

p−ps= −l
�
9 ·u−b

(f

(t
�

, (15)

where p is the total pressure and ps is the static pressure. In the present implementation,
Equation (13) is constructed using bilinear shape functions only, with a one-point reduced
integration quadrature used to integrate all penalized terms.

Because the mushy zone is modeled as a porous medium, the Darcy term becomes important
in the momentum equation when 1BfB0.6 and dominant when fB0.6. This poses a
numerical difficulty because the permeability varies by many orders of magnitude as f goes
from one to zero. The permeabilities used in this work are based on References [23–25] and
are given in Table I. Figure 1 shows the permeability perpendicular to the primary dendrite
arm spacing as a function of the volume fraction of liquid. To accommodate this wide range
of variability in the permeability, a variable penalty parameter, l, is used. This l is defined as
a step function that depends on the volume fraction of liquid, with value l=109 if f\0.9 and
l=1015 if fB0.9. The effectiveness of this modified penalty method in calculating the flow in
these two-phase situations is shown in the following section.

Two different strategies have been used to account for the fact that the volume of liquid in
the container is changing. The first assumes that the top is an open boundary through which
liquid at the initial melt composition, c0, is allowed to enter to compensate for the volume
change due to solidification. This is a good approximation, as long as thermosolutal convec-
tion in the fluid does not reach the top. The second method assumes that the top free surface
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always remains planar and moves downward as a rigid lid. At each time step, the change in
volume, D, is calculated from

D=
&

V
b
(f

(t
dV, (16)

where V is the domain. Knowing D, one can calculate the velocity of the free surface, and the
distance it moves is adjusted accordingly. This approach is no longer valid once the mushy
zone reaches the free surface. However, the objective is not to study the last stage of the
solidification, and the calculations are not carried out for times long enough for the mushy
zone to reach the top surface.

Figure 4. Detail of flow instability ahead of the mushy zone at �g2�=2×10−4g0: (a) unperturbed flow at 4000 s; (b)
perturbed flow at 7000 s.
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Figure 5. Flow instability at �g2�=2×10−4g0 in a container 4 cm wide. Except for width, same conditions as Figure
2.

4. NUMERICAL SIMULATIONS

Two-dimensional simulations of the solidification of a Pb–23wt.%Sn alloy in a rectangular
container of dimensions 0.007 m wide by 0.04 m high are considered. Initially, a linear
temperature gradient of 100 K m−1 is imposed with the temperature at the bottom of the
container equal to the freezing temperature of the alloy. The physical properties used in the
calculations are given in Table I. No-slip is imposed along the boundaries, and a sliding rigid
lid is applied at the top of the container. The side walls are assumed to be adiabatic, and the
initial temperature gradient is maintained at the top surface throughout the calculation. Under
these conditions, the primary dendrite arm spacing, d1, is 200 mm, in accordance with
Reference [31]. The latent heat is taken at the reference temperature, TH=528 K. Initially, the
melt is at rest, and a constant cooling rate is applied uniformly at the bottom of the container
for t]0.

In the first calculation, it is assumed that there is no gravitational field, i.e. g=0. This case
is used to validate the algorithm. The cooling rate applied at the bottom is 0.03333 K s−1, and
the flow in the casting is driven entirely by the change in density in the solidifying mushy zone.
Figure 2 shows the results after 4000 s of solidification time. The bottom 4 mm are fully
solidified, the mushy zone spans the region between 4 and 12.3 mm, and the rest is still all
liquid. At the top, we observe that the rigid lid has moved down approximately 0.8 mm due
to shrinkage. The uniform velocity of the rigid lid evolves into a fully developed Poiseuille flow
within the top 5 mm of the container. The pressure gradient in the overlying liquid in the
vertical direction in the fully developed section shows only a 5% difference when compared
with the solution for Poiseuille flow using the calculated maximum vertical velocity at the
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centerline, which is −3.859×10−7 m s−1. When the liquid encounters the top of the mushy
zone, it diverges toward the vertical surfaces and reverts back to a uniform vertical velocity at
a given x2 within the mushy zone. Figure 3 shows the vertical pressure gradient in the vertical
direction along the centerline in the mushy zone as calculated in the program using the penalty
approximation and estimated directly from the Darcy equation

(p
(x2

=mKx 2

−1u2, (17)

where m is the viscosity, and the vertical velocity component, u2, is the calculated velocity. It
is observed that the agreement is indeed excellent and that the flow within the mushy zone is
dominated by the Darcy term as expected.

Figure 6. Results showing flow dominated by thermosolutal convection at 4000 s for �g2�=10−3g0. Except for gravity
level, same conditions as Figure 4(a).
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Figure 7. Flow at 1500 s for �g2�=g0 with strong convection in channels and macrosegregation within the mushy zone.

The gravitational force in the negative vertical direction is now increased. No significant
change from the g=0 case is observed up to about �g2�=10−4g0, where g0=9.8 m s−2 is the
terrestrial gravity. Figure 4(a) shows results after 4000 s of solidification at �g2�=2×10−4g0.
Here, it is observed that the interaction of the shrinkage flow with the lighter solute-enriched
layer at the top of the mushy zone forms two recirculation cells in the all-liquid flow just above
the mushy zone. This flow is itself unstable, and when perturbed, one of the cells becomes
dominant, as shown in Figure 4(b) at 7000 s. Calculations on wider geometries show that these
cells also exhibit a spatial wavelength in the horizontal direction, which, in the present
calculations, appeared to be confined to between 7 and 13 mm. This is shown in Figure 5 for
a container 4 cm wide after 2000 s of solidification time for the same conditions discussed
above.

Further increase in the gravitational force leads to a regime typical of double-diffusive flows
in which the stratification due to solute redistribution leads to circulation cell patterns that
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now are significantly stronger. An example of this is given in Figure 6, where results for
�g2�=10−3g0 at 4000 s show that the flow due to shrinkage is almost negligible, as compared
with the thermsolutal flow. Figure 7 shows the flow field for �g2�=g0 at 1000 s. The effect of
gravity becomes overwhelming in Figure 7, which shows strong channels developing in the
mushy zone and very strong thermosolutal convection with velocities two orders of magnitude
larger than in Figure 6. A further effect of the strong convection in the liquid is depicted in
Figure 8(a), which shows how the isotherms are affected by convection. The calculated
pressure for this last case at �g2�=g0 is shown in Figure 8(b), where the effect of the strong
convection in the mushy zone is evident. The solute concentration in the channels reaches as
much as 30wt% and will result in defects in the cast known as freckles.

Figure 8. Calculated temperature and pressure at 1500 s for �g2�=g0 showing the disturbances due to the channels in
the mushy zone: (a) temperature; (b) pressure. Same conditions as Figure 7.
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5. CONCLUSIONS

A mathematical model of the solidification of binary alloys that includes shrinkage induced by
a change of density due to a phase change has been developed under the simplifying
assumption that the densities in the fluid and solid phases are different, but constant. The finite
element model of Felicelli et al. [19] was extended to this case by means of a generalized
penalty function approximation using a variable penalty parameter applied to the non-
homogeneous continuity equation that results. The model has been applied to solidification of
binary alloys under zero and reduced gravity conditions. The results indicate that the
shrinkage flow is stable, but when it interacts with buoyancy at �g2�:2×10−4g0 or greater
levels of gravity, instabilities develop that induce flow in the melts. The results also show that,
for slow rates of solidification, the effect of shrinkage on the overall flow pattern is negligible
under terrestrial gravity conditions.
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